由于获取条件的不同和外界的各种干扰,经过CCD视觉成像系统采集到的原始图像往往存在着大量的噪声和失真,这种数据无法直接用于机器视觉检测系统。为了消除外界环境对图像采集的干扰,需要对图像进行预处理,例如通过图像分析和识别等手段,消除使图像质量恶化的因素,使采集到的图像能够更有效的用于有效信息的提取,接下来,我们就讲一讲机器视觉检测设备图像预处理的三种方式。
均值滤波:其是一种线性滤波算法,用图片中目标像素周围8个像素的平均值来代替该像素自身,从而达到降噪效果。但是该算法自身存在一定的缺陷,会破环图像的细节部分,使其变得模糊,不能有效的去除噪点。
中值滤波:是一种基于统计排序理论的非线性滤波算法,其将待处理的像素点用周围的8个或者24个像素点中的中值进行替换,从而达到降噪的目的。
高斯滤波:其为一种线性平滑滤波算法,用于处理高斯噪声,将待处理的像素点用周围其他像素点的加权平均值代替。高斯滤波处理对于服从正态分布的噪声特别有效。